

OpenBSD as a full-featured NAS

OpenBSD is not only for Network related projects

Fosdem 2019

Email: vincent.delft@easytransitions-ict.be

Blog: https://www.vincentdelft.be

My company: https://easytransitions-ict.be

mailto:vincent.delft@easytransitions-ict.be

Topics for today

● What are the goals of this project
● How I’ve implemented it
● What were/are the problems
● Lesson’s learned
● The scripts developed are shared
● Conclusions

Goals

● The goals are :

– An encrypted NAS

– At least 2 disks (1 for long term backup and for security)

– Have a “time-machine like” system (for short term backup)

– Provide files via NFS, Samba and sshfs

– Every user has his own R/W folder and several other R/O folders

– Delivering mp3, ogg, Flac to my hifi system + remote control it via
smartphone

– Deliver multi media (video, photos) to TV (~VOD)

– Run on cheap HW

– Easy to maintain

Design

NAS

FLAC
JPEG/RAW
MKV/AVI
Working files

DAC / Hifi

TV dlna

Speakers: photo by Goh Rhy Yan on Unsplash

https://unsplash.com/photos/0vO0z83M4bc?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/search/photos/speakers?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText

NAS

● 3 main folders:
– /mnt/sd1/share : photos, video, music. (RO)
– /mnt/sd1/pfiles: personal files

● Each user has his own RW folder (not visible by others)
● Some “global folders” are RW for all users

– /mnt/sd1/machines: all machine’s backups (not
visible by std users)

Hardware (old)

● Intel(R) Atom(TM) CPU D2500 @ 1.86GHz
– Fan less
– OpenBSD compatible
– 4 GB Ram
– 2 SATA ports
– Disks 1TB

Hardware

● After few years of good services,
a new board with a better CPU
– ASUSTeK COMPUTER INC. H110T
– Fan
– OpenBSD compatible
– CPU 3.3 GHZ
– 4GB Ram
– 2 SATA ports
– Same disks

Lesson’s learned HW

● Read man pages before buying

Setup OpenBSD

● Since we have 2 SATA slots:
● Install OpenBSD on an USB key

– Normal installation process
– Select the correct storage (USB) and follow standard

installation steps
– 16 GB is enough

● Encrypt the Disks
– My main disk is sd1
– Remove first blocks: dd if=/dev/urandom of=/dev/rsd1c

bs=1m count=10
– Initialize it: fdisk -iy sd1

● Partition it:

disklabel -E sd1

Label editor (enter '?' for help at any prompt)

> a i

offset: [64]

size: [1953520001] *

FS type: [4.2BSD] RAID

> w

> q

● Encrypt it

bioctl -c C -l sd1i softraid0

New passphrase:

Re-type passphrase:

sd2 at scsibus2 targ 1 lun 0: <OPENBSD, SR
CRYPTO, 005> SCSI2 0/direct fixed

sd2: 972877MB, 512 bytes/sector, 1953525168
sectors

softraid0: CRYPTO volume attached as sd2

● Partition it and Format it:

disklable –E sd2

Label editor (enter '?' for help at any prompt)

> a i

offset: [64]

size: [1953519473] *

FS type: [4.2BSD]

> w

> q

newfs /dev/rsd2i

mount /dev/sd2i /mnt

Points of attention

● At boot, we have to:
– Bioctl the disk with the pass-phrase
– Mount the filesystem (will be /dev/sd2i)

● But we have 2 disks !!! (+ the USB)
– Are we sure that same disk will always be sd1 ?
– If we boot with 1 disk, the decrypted filesystem will be sd2. If we boot

with 2 encrypted disks, our filesystem could be sd4 or sd5.
– Use of DUID is the solution

● At shutdown we have to umount and remove the RAID
– Umount /mnt (dev/sd2i)
– Bioctl -d sd2

#disklabel sd1

/dev/rsd1c:

type: SCSI

disk: SCSI disk

label: WDC WD10EFRX-68P

duid: 8fbf08f1b85e8f65

flags:

bytes/sector: 512

sectors/track: 63

tracks/cylinder: 255

sectors/cylinder: 16065

cylinders: 121601

total sectors: 1953525168

boundstart: 64

boundend: 1953520065

drivedata: 0

16 partitions:

size offset fstype [fsize bsize cpg]

 c: 1953525168 0 unused

 i: 1953520001 64 RAID

/etc/rc.local
#mkdir /mnt/sd1

logger "rc.local: bioctl the nas"

bioctl -c C -l 8fbf08f1b85e8f65.i -p /root/xxx softraid0 > /tmp/maindisk

device=$(sed -n -e '/CRYPTO/ s/.* //p' /tmp/maindisk)

logger "rc.local: trying to mount the nas"

mountok=1

mount -o noatime,softdep /dev/${device}i /mnt/sd1

if [$? -gt 0]; then

 mountok=0

 logger "rc.local: mount failed !!! start fsck -y"

 fsck -y /dev/${device}i

 logger "rc.local: retry to mount the nas"

 mountok=1

 mount -o noatime,softdep /dev/${device}i /mnt/sd1

 if [$? -gt 0]; then

 mountok=0

 fi

fi

if ["$mountok" = "1"]; then

 ...

else

 Logger “rc.local: failed to start applications

fi

/etc/rc.shutdown

…

for i in $(mount | grep -v mfs | grep -v " / " | cut -d' ' -f1)

do

 logger "rc.shutdown: umount:$i"

 umount -f $i

 sleep 5

 sync

 logger "rc.shutdown: bioctl -d $(echo $i | cut -d '/' -f 3 |
cut -d 'i' -f1)"

 bioctl -d $(echo $i | cut -d '/' -f 3 | cut -d 'i' -f1)

done

Lessons learned: setup

● DUID is a must to manage correctly each disk
(avoid to over-write or erase to good files)

● Attention to perform for the boot and shutdown
process

● Whole setup is amazingly simple, yet efficient,
on OpenBSD

Time machine

● https://sourceforge.net/projects/simple-time-machine/
● Use rsync (pkg_add rsync)
● Hard links against a reference (folder current)
● I’m running it 1x per day (but could 1x hour). If no data changed since last run,

nothing performed.
● Every user’s folders and important folder (photos, music, movies, ...) have their

“time machine” allowing me to retrieve old deleted or modified files.

obsd-nas:/mnt/sd1/machines/nas#du -h -d1 . | sort -k2

6.6M ./20181216

6.4M ./20181217

7.0M ./20181220

5.2M ./20181222

937M ./current

https://sourceforge.net/projects/simple-time-machine/

Time machine

● Config file for /etc, /root, /var:
backup_type=full

historical_retention=25

folder_size=1920112 # calculated on 01-01-2019
01:31:59

● Config file for mp3:
backup_type=check_only_size

historical_retention=5

folder_size=120480192 # calculated on 17-12-2017 01:38:52

folder_pattern="+%Y%m%d"

Lessons learned

● Hard links are very good for such “file based”
backups. Limited storage impact

● Rsync is perfect for this job.
● Easy for the end users to retreive their old files

Sharing files

● Server side: standard configs
– NFS server is NFSv3 in OpenBSD

obsd-nas:~#more /etc/exports

/mnt/sd1 -maproot=root -alldirs -network=192.168.3.0 -mask=255.255.255.0

● pkg_add samba + standard setup:
– One shared folder
– 2 home folders for users “is” and “ra”

#more /etc/samba/smb.conf

 [global]

 workgroup = WORKGROUP

 hosts allow = 192.168.3.

 guest account = nobody

 map to guest = Bad User

 log file = /var/log/samba/smbd.%m

 log level = 1

 max log size = 500

 dns proxy = no

#============================ Share Definitions ==============================

[share]

 path = /mnt/sd1/share

 guest ok = yes

 read only = yes

 browseable = yes

[is]

 path = /mnt/sd1/personal_files/is/current

 valid users = is

 guest ok = no

 read only = no

 browseable = yes

[ra]

 path = /mnt/sd1/personal_files/ra/current

 valid users = ra

 guest ok = no

 read only = no

 browseable = yes

● For sshfs
– setup ssh keys between client and server
– On client:

● pkg_add sshfs-fuse
● Mount it:

UID=$(id -u)

GID=$(id -g)

doas sshfs root@nas:/mnt/sd1 /net/nas \

 -o idmap=user,uid=$UID,gid=$GID,allow_other,\

 follow_symlinks,reconnect

lesson’s learned: Samba, NFS and
sshfs

Client side:
– Performance parameters (/etc/fstab):

nas:/mnt/sd1 /net/nas nfs
rw,noauto,bg,nodev,nosuid,soft,intr,-r=4096,-
w=4096 0 0

– Better to not use NFS over Wifi. Works, but not
reliable.

– Samba is really simple for OSX and Linux clients
connected over wifi.

– For sshfs: run well with OpenBSD over wifi

backup

● Copy master disk to backup disk 1x per month
● Copy master disk to external disk 3x per year

(paranoiac ?)
● But before make sure that we copy correct files

– Check your files are not impacted by a bit rotation issue.
– Yabitrot (https://sourceforge.net/projects/yabitrot/):

a python script which store checksum’s files (based on
their Inode) in an SQLite DB.

obsd-nas:~#more /etc/monthly.local

/usr/local/bin/python3.6 /root/yabitrot.py -p /mnt/sd1 -e "*.core" -v 0 -L /var/log/yabitrot.log

● Yabitrot
– Takes into account the hardlinks
– Written in python3 using standard modules (sqlite, zlib)
– Use a fast hash algorithm: zlib.adler32
– Do not cross filesystems (because of inodes)
– Note: Adler is unsafe for protecting against intentional modification

● Restore corrupted files from backup before taking backup
Thu Dec 6 02:30:01 2018: DB stored on: /mnt/sd1/.cksum.db

Thu Dec 6 02:30:01 2018: Device ID:1080

Thu Dec 6 04:56:09 2018: 6298 files removed from DB

Thu Dec 6 04:56:10 2018: 6628 files added

Thu Dec 6 04:56:10 2018: 518 files updates

Thu Dec 6 04:56:10 2018: 0 files error

Thu Dec 6 04:56:10 2018: 6174625 files analyzed in 8768.73 sec, 717.907 GB

Thu Dec 6 04:56:10 2018: 773350 entries in the DB

backup

● Cannot use rsync to sync 2 disks because too
many hardinks (cfr rsync man page)

● Do not use DD because of encryption (any
feedbacks ?)

● Tested tar, cpio and pax
● Finally adopt pax:

cd /mnt/sd1

pax -rw -pe $VERBOSE ./machines /mnt/sd0/

bioctl -c C -I /dev/<duid>i softraid0

> passphrase

mount /dev/sdxi /mnt/sd0

... rm ...

... pax ...

umount / mnt/sd0

bioctl -d sdx

old hw new hw

MACHINE="YES" #20 minutes 4m + 10m

PFILES="YES" #29 hours 2h10 + 4h40

SHARE="YES" #17 hours 9m + 2h15

VERBOSE=””

● In case of disaster (fire, water, ...) better to not have
master and backup disks in the same box.

● I perform a copy to a 2.5” disk too (??!!??):

bioctl -c C -I /dev/<duid>i softraid0

> passphrase

mount /dev/sdxi /mnt/sd0

... rm ...

... pax ...

umount / mnt/sd0

bioctl -d sdx

Lessons learned: backup

● Be verify sure of the good status of files before
putting them on backup devices (overwrite)

● Pax is perfect for this job
● Powerful cpu is required because of encryption

Hifi

● mpd is running on NAS: pkg_add mpd
● Adapt /etc/mpd.conf:
music_directory "/mnt/sd1/share/music/current"

bind_to_address "nas"

audio_output {

 type "sndio"

 name "sndio output"

 mixer_type "software"

}

Hifi

● Thanks to sndio, audio output is redirected to
small machine located close to an hifi-DAC

● Smartphone app like MALP allow you to
manage your sounds

● As web based mgt system, I propose ympd
(runs on openbsd).

Hifi

● Normal OpenBSD installation (I’m using my usb read-only setup to allow
poweroff)

● ZOTAC ZBOX-ID18 with 4GBRam, no disk.
● Have a digital output: mixerctl shows outputs.SPDIF_source=dig-dac-0:1

more /etc/rc.local

sleep 2

rcctl stop sndiod

mixerctl outputs.mode=digital

rcctl start sndiod

sleep 2

/usr/bin/ssh vi@nas /home/vi/start_mpd.sh

sleep 2

/usr/local/bin/ympd -h nas -w 80 &

obsd-nas:~#more start_mpd.sh

#!/bin/sh

DESTINATION=”hifi”

export AUDIODEVICE="snd@$DESTINATION/0"

echo "$AUDIODEVICE"

doas rcctl restart mpd

sleep 2

mpc -q -h nas play #play last songs

YMPD

● https://www.ympd.org/
● pkg_add ympd (release 1.3.0)
● MPD Web GUI - written in C, utilizing

Websockets and Bootstrap/JS
● Put the address of your NAS and the mpd port

(6600) in the settings of ympd

;-)

Mpd on android: MALP

YMPD

YMPD

VOD

● Minidald is installed on the NAS server
(pkg_add minidlna) require xbase.tgz

● Adapt /etc/minidlna.conf
network_interface=re0

media_dir=V,/mnt/sd1/share/films/current

media_dir=PV,/mnt/sd1/share/photo/current

My TV screen

Lessons learned

● OpenBSD offers all required plumbing for
sharing multimedia files.

● Sndiod is awesome good.

Keep system up2date

● Syspatch
For base’s security updates

● Openup
Use mtier services if you
want to have your
software adapted

https://stable.mtier.org/u
pdates

Openbsd upgrades every 6 months

● I’m not following the standard upgrade process,
because I do not have easy access to the
consoles

Upgrade

VERSION="64" # The version you want to install

SRC="https://cdn.openbsd.org"

set -A SETS xbase xfont xserv xshare man game comp base #base should always be the last

DEST="/tmp/upgrd"

Download OpenBSD kernel files and sets

MAJ=${VERSION%?}; MIN=${VERSION#${VERSION%?}}; DWNLD="$SRC/pub/OpenBSD/$MAJ.$MIN/amd64/"

[-d "$DEST"] || mkdir -p "$DEST"; cd "$DEST"

echo == Temporary folder $DEST ==

[-f SHA256.sig] || ftp ${DWNLD}SHA256.sig

for COMPO in bsd.rd bsd bsd.mp;do

 echo == Treating $COMPO ==

 [-f $COMPO] || ftp $DWNLD$COMPO

 signify -C -p /etc/signify/openbsd-$VERSION-base.pub -x SHA256.sig $COMPO || exit 1

done

for COMPO in ${SETS[@]}; do

 echo == Treating $COMPO$VERSION.tgz ==

 [-f $COMPO$VERSION.tgz] || ftp $DWNLD$COMPO$VERSION.tgz

 signify -C -p /etc/signify/openbsd-$VERSION-base.pub -x SHA256.sig $COMPO$VERSION.tgz || exit 1

done

install kernel files (cfr FAQ)

ln -f /bsd /obsd && cp bsd.mp /nbsd && mv /nbsd /bsd

cp bsd.rd /

cp bsd /bsd.sp

sha256 -h /var/db/kernel.SHA256 /bsd

install the selected sets (Cfr FAQ)

[-f /sbin/oreboot] || cp /sbin/reboot /sbin/oreboot || exit 1

for _f in ${SETS[@]}; do

 echo "tar -C / -xzphf $_f"

 tar -C / -xzphf "$_f" || exit 1

done

echo "== DONE =="; echo "After reboot, please follow the remaining tasks list on https://www.openbsd.org/faq/upgrade$VERSION.html#NoInstKern"

echo "When ready, perform: /sbin/oreboot"

Upgrade software

● pkg_add -uv

Conclusion

An encrypted NAS

At least 2 disks (1 for long term backup and for security)

Have a “time-machine like” system (for short term backup)

Provide files via NFS, Samba and sshfs

Delivering mp3, ogg, Flac to my hifi system + remote control it via
smartphone

Deliver multi media (video, photos) to TV (~VOD)

Easy to maintain

BSD index

● Beard, Scare & Difficulty index *

* Inspired by: https://www.youtube.com/watch?v=bg4-fJNWoiU

Picture from www.pexels.com adapted by me

http://www.pexels.com/

BSD index

● This project is at Level 1 of the index

Lessons learned

● Verify that your Hardware has drivers in
openbsd before buying it (read man pages)

● Look for required softwares on the OpenBSD
packages repository (http://openports.se)

● Upgrades are fun to perform because very few
surprises

● OpenBSD is matching perfectly this use case
● OpenBSD is really fun to use

For french speaking persons

https://www.atramenta.net/
books/heberger-son-
serveur-avec-openbsd/613

Questions ?

Email: vincent.delft@easytransitions-ict.be

Blog: https://www.vincentdelft.be/category/openbsd

Company: https://easytransitions-ict.be

mailto:vincent.delft@easytransitions-ict.be

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53

