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Topics for today

● What are the goals of this project
● How I’ve implemented it
● What were/are the problems
● Lesson’s learned
● The scripts developed are shared
● Conclusions



  

Goals

● The goals are :

– An encrypted NAS

– At least 2 disks (1 for long term backup and for security)

– Have a “time-machine like” system (for short term backup) 

– Provide files via NFS, Samba and sshfs

– Every user has his own R/W folder and several other R/O folders

– Delivering mp3, ogg, Flac to my hifi system + remote control it via 
smartphone

– Deliver multi media (video, photos) to TV (~VOD)

– Run on cheap HW

– Easy to maintain



  

Design

NAS

FLAC
JPEG/RAW
MKV/AVI
Working files

DAC / Hifi

TV  dlna

Speakers: photo by Goh Rhy Yan on Unsplash

https://unsplash.com/photos/0vO0z83M4bc?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/search/photos/speakers?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText


  

NAS

● 3 main folders:
– /mnt/sd1/share : photos, video, music. (RO)
– /mnt/sd1/pfiles: personal files

● Each user has his own RW folder (not visible by others)
● Some “global folders” are RW for all users

– /mnt/sd1/machines: all machine’s backups (not 
visible by std users)



  

Hardware (old)

● Intel(R) Atom(TM) CPU D2500 @ 1.86GHz
– Fan less
– OpenBSD compatible
– 4 GB Ram
– 2 SATA ports 
– Disks 1TB 



  

Hardware

● After few years of good services, 
a new board with a better CPU
– ASUSTeK COMPUTER INC. H110T
– Fan
– OpenBSD compatible
– CPU 3.3 GHZ
– 4GB Ram
– 2 SATA ports
– Same disks



  

Lesson’s learned HW

● Read man pages before buying



  

Setup OpenBSD

● Since we have 2 SATA slots:
● Install OpenBSD on an USB key

– Normal installation process
– Select the correct storage (USB) and follow standard 

installation steps
– 16 GB is enough

● Encrypt the Disks
– My main disk is sd1
– Remove first blocks: dd if=/dev/urandom of=/dev/rsd1c 

bs=1m count=10
– Initialize it: fdisk -iy sd1



  

● Partition it:

# disklabel -E sd1

Label editor (enter '?' for help at any prompt)

> a i

offset: [64]

size: [1953520001] *

FS type: [4.2BSD] RAID

> w

> q



  

● Encrypt it

# bioctl -c C -l sd1i softraid0

New passphrase:

Re-type passphrase:

sd2 at scsibus2 targ 1 lun 0: <OPENBSD, SR 
CRYPTO, 005> SCSI2 0/direct fixed

sd2: 972877MB, 512 bytes/sector,  1953525168 
sectors

softraid0: CRYPTO volume attached as sd2



  

● Partition it and Format it:

# disklable –E sd2

Label editor (enter '?' for help at any prompt)

> a i

offset: [64]

size: [1953519473] *

FS type: [4.2BSD] 

> w

> q

# newfs /dev/rsd2i

# mount /dev/sd2i  /mnt



  

Points of attention

● At boot, we have to:
– Bioctl the disk with the pass-phrase
– Mount the filesystem (will be /dev/sd2i)

● But we have 2 disks !!! (+ the USB)
– Are we sure that same disk will always be sd1 ?
– If we boot with 1 disk, the decrypted filesystem will be sd2. If we boot 

with 2 encrypted disks, our filesystem could be sd4 or sd5. 
– Use of DUID is the solution

● At shutdown we have to umount and remove the RAID
– Umount /mnt (dev/sd2i)
– Bioctl -d sd2



  

#disklabel sd1

# /dev/rsd1c:

type: SCSI

disk: SCSI disk

label: WDC WD10EFRX-68P

duid: 8fbf08f1b85e8f65

flags:

bytes/sector: 512

sectors/track: 63

tracks/cylinder: 255

sectors/cylinder: 16065

cylinders: 121601

total sectors: 1953525168

boundstart: 64

boundend: 1953520065

drivedata: 0 

16 partitions:

#                size           offset  fstype [fsize bsize   cpg]

  c:       1953525168                0  unused                    

  i:       1953520001               64    RAID                    



  

/etc/rc.local
#mkdir /mnt/sd1

logger "rc.local: bioctl the nas"

bioctl -c C -l 8fbf08f1b85e8f65.i -p /root/xxx softraid0 > /tmp/maindisk

device=$(sed   -n -e '/CRYPTO/ s/.* //p' /tmp/maindisk)

logger "rc.local: trying to mount the nas"

mountok=1

mount -o noatime,softdep /dev/${device}i /mnt/sd1

if [ $? -gt 0 ]; then

    mountok=0

    logger "rc.local: mount failed !!! start fsck -y"

    fsck -y /dev/${device}i

    logger "rc.local: retry to mount the nas"

    mountok=1

    mount -o noatime,softdep /dev/${device}i /mnt/sd1

    if [ $? -gt 0 ]; then

       mountok=0

    fi

fi

if [ "$mountok" = "1" ]; then

  ...

else

    Logger “rc.local: failed to start applications

fi



  

/etc/rc.shutdown

…

for i in $(mount | grep -v mfs | grep -v " / " | cut -d' ' -f1)

do

  logger "rc.shutdown: umount:$i"

  umount -f $i

  sleep 5

  sync

  logger "rc.shutdown: bioctl -d $(echo $i | cut -d '/' -f 3 | 
cut -d 'i' -f1)"

  bioctl -d $(echo $i | cut -d '/' -f 3 | cut -d 'i' -f1)

done



  

Lessons learned: setup

● DUID is a must to manage correctly each disk 
(avoid to over-write or erase to good files)

● Attention to perform for the boot and shutdown 
process

● Whole setup is amazingly simple, yet efficient, 
on OpenBSD



  

Time machine

● https://sourceforge.net/projects/simple-time-machine/
● Use rsync (pkg_add rsync)
● Hard links against a reference (folder current)
● I’m running it 1x per day (but could 1x hour). If no data changed since last run, 

nothing performed.
● Every user’s folders and important folder (photos, music, movies, ...) have their 

“time machine” allowing me to retrieve old deleted or modified files. 

obsd-nas:/mnt/sd1/machines/nas#du -h -d1 . | sort -k2

6.6M    ./20181216

6.4M    ./20181217

7.0M    ./20181220

5.2M    ./20181222

937M    ./current

https://sourceforge.net/projects/simple-time-machine/


  

Time machine

● Config file for /etc, /root, /var:
backup_type=full

historical_retention=25

folder_size=1920112 # calculated on 01-01-2019 
01:31:59

● Config file for mp3:
backup_type=check_only_size

historical_retention=5

folder_size=120480192 # calculated on 17-12-2017 01:38:52

folder_pattern="+%Y%m%d"



  



  

Lessons learned

● Hard links are very good for such “file based” 
backups. Limited storage impact

● Rsync is perfect for this job. 
● Easy for the end users to retreive their old files



  

Sharing files

● Server side: standard configs
– NFS server is NFSv3 in OpenBSD

obsd-nas:~#more /etc/exports                    

/mnt/sd1 -maproot=root -alldirs -network=192.168.3.0 -mask=255.255.255.0

● pkg_add samba + standard setup:
– One shared folder
– 2 home folders for users “is” and “ra”



  

#more /etc/samba/smb.conf

   [global]

   workgroup = WORKGROUP

   hosts allow = 192.168.3. 

   guest account = nobody

   map to guest = Bad User

   log file = /var/log/samba/smbd.%m

   log level = 1

   max log size = 500

   dns proxy = no 

#============================ Share Definitions ==============================

[share]

        path = /mnt/sd1/share

        guest ok = yes

        read only = yes

        browseable = yes

[is]

        path = /mnt/sd1/personal_files/is/current

        valid users = is

        guest ok = no

        read only = no

        browseable = yes

        

[ra]

        path = /mnt/sd1/personal_files/ra/current

        valid users = ra

        guest ok = no

        read only = no

        browseable = yes



  

● For sshfs 
– setup ssh keys between client and server 
– On client: 

● pkg_add sshfs-fuse
● Mount it:

UID=$(id -u)

GID=$(id -g)

doas sshfs root@nas:/mnt/sd1 /net/nas  \

           -o idmap=user,uid=$UID,gid=$GID,allow_other,\

              follow_symlinks,reconnect



  

lesson’s learned: Samba, NFS and 
sshfs

Client side:
– Performance parameters (/etc/fstab): 

nas:/mnt/sd1 /net/nas nfs  
rw,noauto,bg,nodev,nosuid,soft,intr,-r=4096,-
w=4096 0 0

– Better to not use NFS over Wifi. Works, but not 
reliable. 

– Samba is really simple for OSX and Linux clients 
connected over wifi.

– For sshfs: run well with OpenBSD over wifi 



  

backup

● Copy master disk to backup disk 1x per month
● Copy master disk to external disk 3x per year 

(paranoiac ?)
● But before make sure that we copy correct files

– Check your files are not impacted by a bit rotation issue. 
– Yabitrot (https://sourceforge.net/projects/yabitrot/): 

a python script which store checksum’s files (based on 
their Inode) in an SQLite DB.

 
obsd-nas:~#more /etc/monthly.local                                                       

/usr/local/bin/python3.6 /root/yabitrot.py -p /mnt/sd1 -e "*.core" -v 0 -L /var/log/yabitrot.log



  

● Yabitrot
– Takes into account the hardlinks
– Written in python3 using standard modules (sqlite, zlib)
– Use a fast hash algorithm: zlib.adler32
– Do not cross filesystems (because of inodes)
– Note: Adler is unsafe for protecting against intentional modification

● Restore corrupted files from backup before taking backup
Thu Dec  6 02:30:01 2018: DB stored on: /mnt/sd1/.cksum.db

Thu Dec  6 02:30:01 2018: Device ID:1080

Thu Dec  6 04:56:09 2018: 6298 files removed from DB

Thu Dec  6 04:56:10 2018: 6628 files added

Thu Dec  6 04:56:10 2018: 518 files updates

Thu Dec  6 04:56:10 2018: 0 files error

Thu Dec  6 04:56:10 2018: 6174625 files analyzed in 8768.73 sec, 717.907 GB

Thu Dec  6 04:56:10 2018: 773350 entries in the DB



  

backup

● Cannot use rsync to sync 2 disks because too 
many hardinks (cfr rsync man page)

● Do not use DD because of encryption (any 
feedbacks ?)

● Tested tar, cpio and pax
● Finally adopt pax:

cd /mnt/sd1

pax -rw -pe $VERBOSE ./machines /mnt/sd0/



  

bioctl -c C -I /dev/<duid>i softraid0

> passphrase

mount /dev/sdxi /mnt/sd0

... rm ...

... pax ...

umount / mnt/sd0

bioctl -d sdx

#             old hw                  new hw

MACHINE="YES" #20 minutes             4m + 10m

PFILES="YES"  #29 hours               2h10 + 4h40

SHARE="YES"   #17 hours               9m + 2h15

VERBOSE=””



  

● In case of disaster (fire, water, ...) better to not have 
master and backup disks in the same box. 

● I perform a copy to a 2.5” disk too (??!!??):

bioctl -c C -I /dev/<duid>i softraid0

> passphrase

mount /dev/sdxi /mnt/sd0

... rm ...

... pax ...

umount / mnt/sd0

bioctl -d sdx



  

Lessons learned: backup

● Be verify sure of the good status of files before 
putting them on backup devices (overwrite)

● Pax is perfect for this job
● Powerful cpu is required because of encryption



  

Hifi

● mpd is running on NAS: pkg_add mpd
● Adapt /etc/mpd.conf:
music_directory         "/mnt/sd1/share/music/current"

bind_to_address         "nas"

audio_output {

        type            "sndio"

        name            "sndio output"

        mixer_type      "software"

}



  

Hifi

● Thanks to sndio, audio output is redirected to 
small machine located close to an hifi-DAC

● Smartphone app like MALP allow you to 
manage your sounds

● As web based mgt system, I propose ympd 
(runs on openbsd).



  

Hifi

● Normal OpenBSD installation (I’m using my usb read-only setup to allow 
poweroff)

● ZOTAC ZBOX-ID18 with 4GBRam, no disk.
● Have a digital output: mixerctl shows outputs.SPDIF_source=dig-dac-0:1  

# more /etc/rc.local                                                                   
                  

sleep 2

rcctl stop sndiod

mixerctl outputs.mode=digital

rcctl start sndiod

sleep 2

/usr/bin/ssh vi@nas /home/vi/start_mpd.sh

sleep 2

/usr/local/bin/ympd -h nas -w 80  &



  

obsd-nas:~#more start_mpd.sh                           
                                                 

#!/bin/sh

DESTINATION=”hifi”

export AUDIODEVICE="snd@$DESTINATION/0"

echo "$AUDIODEVICE"

doas rcctl restart mpd

sleep 2

mpc -q -h nas play           #play last songs



  

YMPD

● https://www.ympd.org/
● pkg_add ympd (release 1.3.0)
● MPD Web GUI - written in C, utilizing 

Websockets and Bootstrap/JS
● Put the address of your NAS and the mpd port 

(6600) in the settings of ympd

;-)



  



  

Mpd on android: MALP



  

YMPD



  

YMPD



  

VOD

● Minidald is installed on the NAS server 
(pkg_add minidlna) require xbase.tgz

● Adapt /etc/minidlna.conf
network_interface=re0

media_dir=V,/mnt/sd1/share/films/current

media_dir=PV,/mnt/sd1/share/photo/current



  

My TV screen



  

Lessons learned

● OpenBSD offers all required plumbing for 
sharing multimedia files.

● Sndiod is awesome good.   



  

Keep system up2date

● Syspatch
For base’s security updates

● Openup
Use mtier services if you 
want to have your 
software adapted

https://stable.mtier.org/u
pdates



  

Openbsd upgrades every 6 months

● I’m not following the standard upgrade process, 
because I do not have easy access to the 
consoles 



  

Upgrade

 

 

   

VERSION="64"  # The version you want to install

SRC="https://cdn.openbsd.org" 

set -A SETS xbase xfont xserv xshare man game comp base #base should always be the last  

DEST="/tmp/upgrd"

# Download OpenBSD kernel files and sets

MAJ=${VERSION%?}; MIN=${VERSION#${VERSION%?}}; DWNLD="$SRC/pub/OpenBSD/$MAJ.$MIN/amd64/"

[ -d "$DEST" ] || mkdir -p "$DEST"; cd "$DEST"

echo == Temporary folder $DEST ==

[ -f SHA256.sig ] || ftp ${DWNLD}SHA256.sig

for COMPO in bsd.rd bsd bsd.mp;do

    echo == Treating $COMPO ==

    [ -f $COMPO ] || ftp $DWNLD$COMPO

    signify -C -p /etc/signify/openbsd-$VERSION-base.pub -x SHA256.sig $COMPO || exit 1

done

for COMPO in ${SETS[@]}; do

    echo == Treating $COMPO$VERSION.tgz ==

    [ -f $COMPO$VERSION.tgz ] || ftp $DWNLD$COMPO$VERSION.tgz

    signify -C -p /etc/signify/openbsd-$VERSION-base.pub -x SHA256.sig $COMPO$VERSION.tgz || exit 1

done

# install kernel files (cfr FAQ)

ln -f /bsd /obsd && cp bsd.mp /nbsd && mv /nbsd /bsd

cp bsd.rd /

cp bsd /bsd.sp

sha256 -h /var/db/kernel.SHA256 /bsd

# install the selected sets (Cfr FAQ)

[ -f /sbin/oreboot ] || cp /sbin/reboot /sbin/oreboot || exit 1

for _f in ${SETS[@]}; do 

    echo "tar -C / -xzphf $_f"  

    tar -C / -xzphf "$_f" || exit 1 

done

echo "== DONE =="; echo "After reboot, please follow the remaining tasks list on https://www.openbsd.org/faq/upgrade$VERSION.html#NoInstKern" 

echo "When ready, perform: /sbin/oreboot"



  

Upgrade software

● pkg_add -uv



  

Conclusion

An encrypted NAS

At least 2 disks (1 for long term backup and for security)

Have a “time-machine like” system (for short term backup) 

Provide files via NFS, Samba and sshfs

Delivering mp3, ogg, Flac to my hifi system + remote control it via 
smartphone

Deliver multi media (video, photos) to TV (~VOD)

Easy to maintain



  

BSD index

● Beard, Scare & Difficulty index *

* Inspired by: https://www.youtube.com/watch?v=bg4-fJNWoiU

Picture from www.pexels.com adapted by me

http://www.pexels.com/


  

BSD index

● This project is at Level 1 of the index



  

Lessons learned

● Verify that your Hardware has drivers in 
openbsd before buying it (read man pages)

● Look for required softwares on the OpenBSD 
packages repository (http://openports.se)

● Upgrades are fun to perform because very few 
surprises

● OpenBSD is matching perfectly this use case  
● OpenBSD is really fun to use



  

For french speaking persons

https://www.atramenta.net/
books/heberger-son-
serveur-avec-openbsd/613



  

Questions ?

Email:         vincent.delft@easytransitions-ict.be

Blog:           https://www.vincentdelft.be/category/openbsd

Company:   https://easytransitions-ict.be

mailto:vincent.delft@easytransitions-ict.be
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